continued from above
Even the two "flex" feed lines from the master cylinder to the ABS brick (which we purchased new for an S550) had to be cut for new S197 tube nuts (both were the larger M12 sizes) and re-flared. This wrapped up the plumbing for the brake system and the ABS brick mounting. Next time we will show the wiring for the speed sensors as well as the additional yaw sensor needed to (hopefully) make this work with the OEM ABS computer.
We want to test the OEM S197 ABS system on this car (to verify that it can work on ABS swapped cars), then we will have found a good, low cost ABS system we can swap onto any car without needing the rare and expensive Ford Racing ABS computer. After we get this tested we can then swap in the Ford Racing ABS computer and retest the brakes with that setup - to see how much better it stops, if any.
CARBON DOORS ADDED + WEIGHT CHECK
Back in 2020 we had "The Carboning" - which was when a huge shipment of carbon fiber arrived from Anderson Composites & Seibon (sister companies) for several of our cars - including this 2015 Mustang. We have already showed the carbon Anderson trunk going on, as well as their carbon "GT500" hood that was transferred over from my 2015 GT.
I had honestly planned on adding the carbon doors AFTER we had a full roll cage, but the weight was already creeping up and I threw caution to the wind and since the lightened steel doors had to come off for the dash removal during the heater core install, it was a good time to drop some pounds.
The door handles and hinges were removed from the steel doors, as well as the stock mirrors and inner release handles. Now we did not add the crash bars from the stock doors, as that involves a lot of surgery and ultimately we want the future roll cage to provide that side intrusion protection. We will likely add some down bars from the main 4-point roll bar as a stop gap solution to this.
There was a lot of grinding, fitting, sanding and fiddly work getting the mirror pockets in the doors to fit the stock side mirrors. These are hand made doors, so this is to be expected. Doug spent a couple of hours creeping up on the right sized pockets, then both mirrors bolted in and fit snug.
The doors went on without any fuss - amazingly they fit the stock hinges and opening without any sanding or grinding, unlike other brands of composite doors we have worked with in the past. These fit like OEM parts, which is likely why Ford has Anderson build some of their factory race car carbon parts.
We have added lots of parts since the last weight check (3060 lbs on 4/1/22) but the carbon doors helped offset some of that and more, with this 3045 lb check (4/21/22). This 3045 weight was with all of the safety gear, both seats, and all of the plumbing. We still lack some wiring work and of course fluids, so a 3100 pound initial race weight is likely.
NRG QUICK RELEASE + STEERING WHEEL
Up until this point we still had the original steering wheel installed, but that was never going to see any track use. To get from the stock wheel to the Momo model 88 wheel with a steering wheel Quick Release AND a working horn, took a bit of work.
I wanted a smaller steering wheel on at this point in the build so we could size and place the digital dash unit. Of course if we are adding an aftermarket steering wheel, and not hoping to keep any airbag or wheel mounted buttons working, we want to add a Quick Release steering wheel hub (aka: "QR").
Normally we would reach into the Sparco/Lifeline catalog and pick one of their beautiful units - but I did want a working horn, and a thinner QR unit. Having driven recently with an NRG branded QR, I rolled the dice and bought the hub adapter and "thin" style QR from them. Unlike other import QR hubs, this brand has an SFI rated unit - so its better than most.
To make the horn button work we needed a clock spring, which was missing along with virtually all wiring on this salvage car. So we went to eBay and bought one for $34, $100 cheaper than the Ford supplied unit. Hey, its just for a horn.
The NRG branded QR hub had a 2 wire pass-thru, which Sparco/Lifeline charge a large up-charge to get. The listing they had for the adapter hub showed "2005-up", but I worried that the 2015-2023 Mustang S550 unit would be different. And it was. I will show below what it took to make their hub adapter fit the S550 with a working clock spring, so we could have a working horn.
Once we bought the clock spring we had to chase down the steering wheel sub-harness, to connect to the wiring of the clock spring once it was mounted. We found that on eBay and only needed one connector - to connect two wires into the clock spring.
This is where the "2005-up" adapter hub from NRG needed major modifications. First up, Doug had to mark and drill the two holes in the hub to align with the clock spring pins, otherwise the tunable clock sprung unit would never rotate. Next up a pocket had to be machined into the back side of the hub to clear the clock spring wiring connector...
You can see the connector on the clock spring, above left. This has to fit within the pocket on the back of the hub adapter. Doug also added a hole for the wiring connector that stays within the hub and sends the wires to the horn button on the Momo wheel.
Details of the steering wheel harness that normally connects to the stock steering wheel, which has a lot of pins for a lot of circuits. We only need two pins for the horn, and those are being connected, above right.
The automotive horn circuit is very simple... it is just a momentary button that closes the circuit, that then triggers a relay that runs the horn. And yes, we use horns on race cars - this has saved me from being backed into in grid TWICE. Thousands of dollars of bodywork damage avoided by a quick "HONK!". The two pass-through contacts for the horn circuit are seen on the open QR hub, above right. again, most QR hubs do NOT have wiring pass-thrus.
We were a bit short on stainless M5 countersunk bolts, so we had a mix of black oxide and SS bolts when mounting the Momo model 88 wheel. I chose the 330 mm version over the larger 350 mm, as it fits my legs and still allows plenty of visibility to a digital dash when looking through it.
All of that work just to have a horn? Yep - hopefully NRG will see this and make a proper S550 hub adapter, so you don't have to drill and machine pockets into your hub if you go with this brand. But this NRG unit is very low cost for the quality of the actual "release" and connection of this unit, and it is also very thin. Moving the wheel away from your body is much more difficult than when using a spacer to move it closer to you. A thin QR setup is tough to find.
SHIFTER MODS, CENTER CONSOLE, & FIRE PROOF SHIFT BOOT
When we were attacking the steering wheel I noticed that the direct mounted shifter on our Tremec T56 Magnum XL was a little too close to the round opening on the S550 transmission tunnel (the "LS" version of this transmission just dropped $400 in price, BTW!) I asked Doug to open that up and prep it for a proper fire-proof shift boot. You can see below how much he cut away, and it now fits perfectly. No, the normal T56 F wouldn't fit this chassis - it places the shifter 5.5" further forward, which would be buried under the dash. And taking a direct shifted trans and adding a remote shifter to it is so backwards that it hurts my brain.
Now there is a bigger hole in the tunnel that needs to be covered up, and the rubber OEM shifter "gasket" wouldn't fit - but it isn't exactly a great fire-proof covering for a hole in the tunnel. We want something better in every race car - to prevent fluids, gasses, heat and fire from breaching the cabin from underneath the car.
I love this Joe's Racing fire-proof and heat repelling shift boot assembly. These are about $125 for the aluminum mounting base + the multi-layer shift boot shown above. This is easy to mount to a flat transmission tunnel like the S550 has, and Doug used 4 riv nuts and bolts to mount the base. The fire-proof shift boot snaps onto the base with 8 snaps.
Now was the time to clean up the center console plastics, which came with this car fortunately. This stuff was pretty gross but Doug cleaned all of this up with some Armor All and rags. This 8.3 pound unit was then placed into the chassis and we looked at the shifter location with the console in place.
Well that added some new restrictions to the shifter path up from the tunnel to the console opening. This led to THREE different shifter extensions which were cut on the CNC plasma table, then threaded and bolted to the shifter base in the transmission and the included shift handle from Tremec. These were each made and tested with the console and stock shift boot in place, then tweaked to fit my driving position.
I will admit that I like a taller shifter, with the knob as close to the steering wheel as possible. But the "S" shaped handle is necessary to allow the shifter to clear the console opening. If you have a gutted interior this won't be necessary, and possibly a T56 Magnum F transmission might fit this swap on a race car. Given enough time I would like to test fit that trans and possibly offer that + the matching driveshaft as an option. Once I drive the car on track we will see how all of this works.
DIGITAL DASH MOCK-UPS
With the Momo steering wheel in place we could finally mock-up some digital dash cut-outs we made to scale off of 4 of the main AiM dash options. And yes, it is no secret that we would rather choose one of this brands digital dash systems if at all possible, simply from how well their on-board PREDICTIVE TIMING systems work. That one feature makes this brand coveted above all others - the ubiquitous AiM lap timer feature.
Of their many sizes we have a handful we tend to use on most race cars - the MXG, the MXP and the MXS. There is also a new wide 10" display that comes with their PDM system shown below that we have been dying to try out on one of our builds. This wide screen is full color and has all sorts of LEDs and icons (or not, you can order it either way) and strangely this would fit well within the S550's dash.
Jason drew these four AiM dash outlines up in CAD and Austin cut them on the CNC plasma table, and these have now been used in a number of cars to size the right unit to fit the dash / driver / steering wheel.
As you can see below, the tall and narrow units did not fit as well as the low and wide - but we have tried to buy the 10" AiM "PDM" dash many times over the last 2.5 years, with zero luck. We keep trying to get one of these from AiM but we keep getting the "well these should be back in stock in 6-8 weeks", which is code for "we have no idea when these will be back in stock". Real lead times have been in the 3-6 month range for this unit every time we try to order. Since AiM is based out of Italy they got really hammered by Covid restrictions, then this new PDM system had some software development delays, this might not be a viable option for a while yet.
We're holding off as long as possible to try to get this 10" digital dash unit - but who knows if we ever will? We might have to punt and try another AiM dash or worse - try another digital dash. The Holley Dominator EFI only works with a handful of brands, and if we do a non-AiM display we would have to utilize an AiM SOLO lap timer separately, which is how we've been doing predictive lap timing in my own cars for 15+ years.
LEXAN BACK WINDOW INSTALL
Thinking we would lose some weight by ditching the rear glass, I decided to go with a Lexan rear window a while ago. We got these from a UK company called Plastics4Performance, and they always produce great fitting Lexan that is pre-cut, curved to shape and pre-painted borders. Even with overseas shipping from the UK their parts cost less than domestic suppliers. We love using P4P whenever we can!
We had Titan Glass (a windshield company) back in the shop in June 2021 and had them pull the rear window, which they got out cleanly and in one piece. Modern glued in windshield and rear glass can be tricky to remove, and tempered side and rear glass literally explodes if you break it - so we let the pros handle removal and reinstallation most times.
Fast forward to Spring 2022 and it was time to get the Lexan installed. Doug mocked these up in the empty back window channel and they fit perfectly. They looked pretty close on the quarter windows as well, but I decided to hold off on installing these for now - seeing how little weight these actually remove.
As you can see the rear Lexan window is only 9 pounds lighter than the stock glass window. Hmm, not much weight loss, which is why I held off on the quarter windows. Remember: glass windows are VERY hard and scratch resistant, but Lexan is the opposite of that.
Doug cleaned out the stock weather strip material and (after the steps below) installed the 1" wide x 1/8" thick, adhesive backed weather strip material we purchased for this install.
Dozens of M4 rivnuts were installed along the perimeter to mount this window in place. We like to use these Tinnerman countersunk stainless steel washers to make the M4 countersunk bolts fit flush to the surface of this window. Drilling the Lexan is easy with a sharp drill bit, and we leave the outer (blue) film on until after all holes are drilled and counter sunk.
continued below
Even the two "flex" feed lines from the master cylinder to the ABS brick (which we purchased new for an S550) had to be cut for new S197 tube nuts (both were the larger M12 sizes) and re-flared. This wrapped up the plumbing for the brake system and the ABS brick mounting. Next time we will show the wiring for the speed sensors as well as the additional yaw sensor needed to (hopefully) make this work with the OEM ABS computer.
We want to test the OEM S197 ABS system on this car (to verify that it can work on ABS swapped cars), then we will have found a good, low cost ABS system we can swap onto any car without needing the rare and expensive Ford Racing ABS computer. After we get this tested we can then swap in the Ford Racing ABS computer and retest the brakes with that setup - to see how much better it stops, if any.
CARBON DOORS ADDED + WEIGHT CHECK
Back in 2020 we had "The Carboning" - which was when a huge shipment of carbon fiber arrived from Anderson Composites & Seibon (sister companies) for several of our cars - including this 2015 Mustang. We have already showed the carbon Anderson trunk going on, as well as their carbon "GT500" hood that was transferred over from my 2015 GT.
I had honestly planned on adding the carbon doors AFTER we had a full roll cage, but the weight was already creeping up and I threw caution to the wind and since the lightened steel doors had to come off for the dash removal during the heater core install, it was a good time to drop some pounds.
The door handles and hinges were removed from the steel doors, as well as the stock mirrors and inner release handles. Now we did not add the crash bars from the stock doors, as that involves a lot of surgery and ultimately we want the future roll cage to provide that side intrusion protection. We will likely add some down bars from the main 4-point roll bar as a stop gap solution to this.
There was a lot of grinding, fitting, sanding and fiddly work getting the mirror pockets in the doors to fit the stock side mirrors. These are hand made doors, so this is to be expected. Doug spent a couple of hours creeping up on the right sized pockets, then both mirrors bolted in and fit snug.
The doors went on without any fuss - amazingly they fit the stock hinges and opening without any sanding or grinding, unlike other brands of composite doors we have worked with in the past. These fit like OEM parts, which is likely why Ford has Anderson build some of their factory race car carbon parts.
We have added lots of parts since the last weight check (3060 lbs on 4/1/22) but the carbon doors helped offset some of that and more, with this 3045 lb check (4/21/22). This 3045 weight was with all of the safety gear, both seats, and all of the plumbing. We still lack some wiring work and of course fluids, so a 3100 pound initial race weight is likely.
NRG QUICK RELEASE + STEERING WHEEL
Up until this point we still had the original steering wheel installed, but that was never going to see any track use. To get from the stock wheel to the Momo model 88 wheel with a steering wheel Quick Release AND a working horn, took a bit of work.
I wanted a smaller steering wheel on at this point in the build so we could size and place the digital dash unit. Of course if we are adding an aftermarket steering wheel, and not hoping to keep any airbag or wheel mounted buttons working, we want to add a Quick Release steering wheel hub (aka: "QR").
Normally we would reach into the Sparco/Lifeline catalog and pick one of their beautiful units - but I did want a working horn, and a thinner QR unit. Having driven recently with an NRG branded QR, I rolled the dice and bought the hub adapter and "thin" style QR from them. Unlike other import QR hubs, this brand has an SFI rated unit - so its better than most.
To make the horn button work we needed a clock spring, which was missing along with virtually all wiring on this salvage car. So we went to eBay and bought one for $34, $100 cheaper than the Ford supplied unit. Hey, its just for a horn.
The NRG branded QR hub had a 2 wire pass-thru, which Sparco/Lifeline charge a large up-charge to get. The listing they had for the adapter hub showed "2005-up", but I worried that the 2015-2023 Mustang S550 unit would be different. And it was. I will show below what it took to make their hub adapter fit the S550 with a working clock spring, so we could have a working horn.
Once we bought the clock spring we had to chase down the steering wheel sub-harness, to connect to the wiring of the clock spring once it was mounted. We found that on eBay and only needed one connector - to connect two wires into the clock spring.
This is where the "2005-up" adapter hub from NRG needed major modifications. First up, Doug had to mark and drill the two holes in the hub to align with the clock spring pins, otherwise the tunable clock sprung unit would never rotate. Next up a pocket had to be machined into the back side of the hub to clear the clock spring wiring connector...
You can see the connector on the clock spring, above left. This has to fit within the pocket on the back of the hub adapter. Doug also added a hole for the wiring connector that stays within the hub and sends the wires to the horn button on the Momo wheel.
Details of the steering wheel harness that normally connects to the stock steering wheel, which has a lot of pins for a lot of circuits. We only need two pins for the horn, and those are being connected, above right.
The automotive horn circuit is very simple... it is just a momentary button that closes the circuit, that then triggers a relay that runs the horn. And yes, we use horns on race cars - this has saved me from being backed into in grid TWICE. Thousands of dollars of bodywork damage avoided by a quick "HONK!". The two pass-through contacts for the horn circuit are seen on the open QR hub, above right. again, most QR hubs do NOT have wiring pass-thrus.
We were a bit short on stainless M5 countersunk bolts, so we had a mix of black oxide and SS bolts when mounting the Momo model 88 wheel. I chose the 330 mm version over the larger 350 mm, as it fits my legs and still allows plenty of visibility to a digital dash when looking through it.
All of that work just to have a horn? Yep - hopefully NRG will see this and make a proper S550 hub adapter, so you don't have to drill and machine pockets into your hub if you go with this brand. But this NRG unit is very low cost for the quality of the actual "release" and connection of this unit, and it is also very thin. Moving the wheel away from your body is much more difficult than when using a spacer to move it closer to you. A thin QR setup is tough to find.
SHIFTER MODS, CENTER CONSOLE, & FIRE PROOF SHIFT BOOT
When we were attacking the steering wheel I noticed that the direct mounted shifter on our Tremec T56 Magnum XL was a little too close to the round opening on the S550 transmission tunnel (the "LS" version of this transmission just dropped $400 in price, BTW!) I asked Doug to open that up and prep it for a proper fire-proof shift boot. You can see below how much he cut away, and it now fits perfectly. No, the normal T56 F wouldn't fit this chassis - it places the shifter 5.5" further forward, which would be buried under the dash. And taking a direct shifted trans and adding a remote shifter to it is so backwards that it hurts my brain.
Now there is a bigger hole in the tunnel that needs to be covered up, and the rubber OEM shifter "gasket" wouldn't fit - but it isn't exactly a great fire-proof covering for a hole in the tunnel. We want something better in every race car - to prevent fluids, gasses, heat and fire from breaching the cabin from underneath the car.
I love this Joe's Racing fire-proof and heat repelling shift boot assembly. These are about $125 for the aluminum mounting base + the multi-layer shift boot shown above. This is easy to mount to a flat transmission tunnel like the S550 has, and Doug used 4 riv nuts and bolts to mount the base. The fire-proof shift boot snaps onto the base with 8 snaps.
Now was the time to clean up the center console plastics, which came with this car fortunately. This stuff was pretty gross but Doug cleaned all of this up with some Armor All and rags. This 8.3 pound unit was then placed into the chassis and we looked at the shifter location with the console in place.
Well that added some new restrictions to the shifter path up from the tunnel to the console opening. This led to THREE different shifter extensions which were cut on the CNC plasma table, then threaded and bolted to the shifter base in the transmission and the included shift handle from Tremec. These were each made and tested with the console and stock shift boot in place, then tweaked to fit my driving position.
I will admit that I like a taller shifter, with the knob as close to the steering wheel as possible. But the "S" shaped handle is necessary to allow the shifter to clear the console opening. If you have a gutted interior this won't be necessary, and possibly a T56 Magnum F transmission might fit this swap on a race car. Given enough time I would like to test fit that trans and possibly offer that + the matching driveshaft as an option. Once I drive the car on track we will see how all of this works.
DIGITAL DASH MOCK-UPS
With the Momo steering wheel in place we could finally mock-up some digital dash cut-outs we made to scale off of 4 of the main AiM dash options. And yes, it is no secret that we would rather choose one of this brands digital dash systems if at all possible, simply from how well their on-board PREDICTIVE TIMING systems work. That one feature makes this brand coveted above all others - the ubiquitous AiM lap timer feature.
Of their many sizes we have a handful we tend to use on most race cars - the MXG, the MXP and the MXS. There is also a new wide 10" display that comes with their PDM system shown below that we have been dying to try out on one of our builds. This wide screen is full color and has all sorts of LEDs and icons (or not, you can order it either way) and strangely this would fit well within the S550's dash.
Jason drew these four AiM dash outlines up in CAD and Austin cut them on the CNC plasma table, and these have now been used in a number of cars to size the right unit to fit the dash / driver / steering wheel.
As you can see below, the tall and narrow units did not fit as well as the low and wide - but we have tried to buy the 10" AiM "PDM" dash many times over the last 2.5 years, with zero luck. We keep trying to get one of these from AiM but we keep getting the "well these should be back in stock in 6-8 weeks", which is code for "we have no idea when these will be back in stock". Real lead times have been in the 3-6 month range for this unit every time we try to order. Since AiM is based out of Italy they got really hammered by Covid restrictions, then this new PDM system had some software development delays, this might not be a viable option for a while yet.
We're holding off as long as possible to try to get this 10" digital dash unit - but who knows if we ever will? We might have to punt and try another AiM dash or worse - try another digital dash. The Holley Dominator EFI only works with a handful of brands, and if we do a non-AiM display we would have to utilize an AiM SOLO lap timer separately, which is how we've been doing predictive lap timing in my own cars for 15+ years.
LEXAN BACK WINDOW INSTALL
Thinking we would lose some weight by ditching the rear glass, I decided to go with a Lexan rear window a while ago. We got these from a UK company called Plastics4Performance, and they always produce great fitting Lexan that is pre-cut, curved to shape and pre-painted borders. Even with overseas shipping from the UK their parts cost less than domestic suppliers. We love using P4P whenever we can!
We had Titan Glass (a windshield company) back in the shop in June 2021 and had them pull the rear window, which they got out cleanly and in one piece. Modern glued in windshield and rear glass can be tricky to remove, and tempered side and rear glass literally explodes if you break it - so we let the pros handle removal and reinstallation most times.
Fast forward to Spring 2022 and it was time to get the Lexan installed. Doug mocked these up in the empty back window channel and they fit perfectly. They looked pretty close on the quarter windows as well, but I decided to hold off on installing these for now - seeing how little weight these actually remove.
As you can see the rear Lexan window is only 9 pounds lighter than the stock glass window. Hmm, not much weight loss, which is why I held off on the quarter windows. Remember: glass windows are VERY hard and scratch resistant, but Lexan is the opposite of that.
Doug cleaned out the stock weather strip material and (after the steps below) installed the 1" wide x 1/8" thick, adhesive backed weather strip material we purchased for this install.
Dozens of M4 rivnuts were installed along the perimeter to mount this window in place. We like to use these Tinnerman countersunk stainless steel washers to make the M4 countersunk bolts fit flush to the surface of this window. Drilling the Lexan is easy with a sharp drill bit, and we leave the outer (blue) film on until after all holes are drilled and counter sunk.
continued below
Comment